Feliratkozás hírlevélre
Print Friendly and PDF

Martinson, S.:
Halálos szénhidrátok. A végzetes cukor-rák kapcsolat.

Fordította: Szendi Gábor

Forrás: Martinson, S: Deadly Carbohydrates. The Lethal Sugar/ Cancer Connection. Life Extension Magazin, 2014 október, 32-41.

Az alábbi összefoglaló tanulmányt azért is tartom érdekesnek, mert a Life Extension Foundation amerikai egészségvédő és kutató alapítványnak semmi köze a paleóhoz, munkatársai mégis ugyanarra a következtetésre jutottak, mint amit a paleo rákkezelésben betöltött szerepéről évek óta bizonygatok. Persze, nincs ezen mit csodálkozni, ugyanazt a szakirodalmat olvassák ők is, én is. Amin inkább el lehet csodálkozni, hogy vajon a közegészségügyi ajánlást megfogalmazókhoz vagy az onkológusokhoz miért nem jutnak el ugyanezek az eredmények?

 

Google hirdetés

 

Egy új vizsgálat azt mutatja, amit a kutatók már régóta gyanítanak - a szénhidrátok fogyasztása drámai mértékben megnöveli a mellrák egy közismert, hírhedten rosszul kezelhető típusának a kockázatát (1).

A vizsgálatot a Cancer Epidemiology, Biomarkers & Prevention szaklapban közölték 2014-ben, és ebben kimutatták, hogy a klimaxon átesett, mellrákkal kezelt nők körében:

-A kiújulás kockázata kétszer valószínűbb volt, ha a műtét után folytatták, vagy növelték szénhidrátfogyasztásukat

-70%-kal valószínűbb volt a kiújulás, ha a tumor pozitivitást mutatott az Inzulinszerű Növekedési Faktor-1-re (IGF-1). (Az IGF-1 szintje emelkedik a szénhidrát fogyasztásra.)

-Ha a nők műtét után folytatták a szénhidrátfogyasztást és IGF-1 pozitív volt a tumoruk, a kiújulás esélye ötszörös volt.

Bár a vizsgálat a kiújulás megelőzését vizsgálta, az eredményekből nyilvánvaló következtetés adódik a még mellrákmentes nők, és bárki számára is, aki a jövőben szeretné megelőzni bármilyen rák kialakulását.

A rákkockázat hatásos csökkentésének egyszerű módja a finomított szénhidrátok (gabonafélék, burgonya, rizs, kukorica, cukor, fruktóz, stb.) fogyasztásának, valamint az inzulin és IGF-1 szint kontrollálása (2). A túlzott szénhidrátfogyasztásnak ismertek a kockázatai (elhízás, rák és szív- és érrendszeri betegségek), a szénhidrátok visszafogása sok embernek jelent komoly kihívást.

Ez a cikk a szénhidrátfogyasztás és a mellrák közti kapcsolatot vizsgálja. Elemezzük, hogy növeli meg a szénhidrát az IGF-1 szintet, ami megnöveli a kiújulás kockázatát.

A mellrák-szénhidrát kapcsolat

Növekvő érdeklődés tapasztalható a tudósok körében a szénhidrátfogyasztás és a rák közötti kapcsolat iránt, különös tekintettel a mellrákra.

A könnyen emészthető szénhidrátokban bővelkedő étrend fokozott rákkockázattal jár. A magas glikémiás indexű (GI, megmutatja, mennyire emeli meg a vércukorszintet egy étel) ételeket fogyasztó nőknek 57%-kal, a magas glikémiás telítettségűt (GL, megmutatja milyen sokáig tart a vércukorszint emelkedés) fogyasztóknak már 153%-kal nagyobb az esélyük a mellrák kialakulására (3).

Ez a megnövekedett kockázat különösen a túlsúlyos vagy elhízott nőkre jellemző. A túlsúlyos nők egy vizsgálatban 35%-kal valószínűbben lettek mellrákosak, ha sok magas GI-jű ételt fogyasztottak (4). Ázsiai nőknél minden naponta elfogyasztott 100 gramm fehér rizs 19%-kal növelte a mellrák kockázatát. A barnarizst fogyasztóknak 24%-kal viszont csökkent a kockázata (5). (Ez azonban megtévesztő, mert a barnarizs nem csökkenti, hanem csak kisebb kockázatot jelent. a legkisebb kockázatot azt jelenti, hogy valaki egyáltalán nem fogyaszt se fehér, se barna rizst. Sz. G. megj.)

Amikor a vércukorszint eléri a cukorbetegek szintjét, a mellrák kockázat kétszer akkora, mint a normál (kisebb, mint 5 mmol/dl) vércukorszintűeknél (6). A sok szénhidrátfogyasztás a tripla negatív mellrák kockázatát növeli meg. az ilyen daganaton nem található ösztrogén, progeszteron vagy HER2 receptor, azaz a hormonterápia hatástalan (7). Az ilyen daganatokkal súlyosabb mellékhatásokkal bíró módon kezelik, és gyakrabban vezetnek halálhoz (8). A Nővérek Egészség Vizsgálatában a sok zöldséget és kevés szénhidrátot fogyasztó nőknek 19%-kal kisebb volt az esélyük az ösztrogén receptor negatív mellrákra (9).

Szénhidrát és rákkockázat

A nagy szénhidrátfogyasztással súlyos probléma van, akkor is, ha a vércukorszint normális. A nagy szénhidrátfogyasztásra magas inzulinszint alakul ki, amint a szervezet stabilizálja a vércukorszintet (4). A fehérje glikáció (a fehérje és vércukor kémiai egyesülése), amit a fokozott vércukor okoz, hozzájárul az inzulinrezisztenciához, ami fokozza a vércukor és inzulinszintet (10). Mivel az inzulin növekedési faktor, a megemelkedett inzulinszint potenciális mellrák kockázatot jelent, mert serkenti a mellszövet sejtjeinek osztódását és növekedését (11). A vizsgálatok feltártak egy további veszélyt - túl a glikáción és a magas inzulinszinten, amely fokozza a szénhidrátot fogyasztó nők mellrák kockázatát.

Ezt a veszélyt egy növekedési faktor képviseli, amely annyira hasonlít az inzulinra, hogy Inzulinszerű Növekedési Faktor-1-nek (IGF-1) nevezik. Az IGF-1 mára úgy tűnik, az egyik legfontosabb kapocs a magas szénhidrátfogyasztás és a rákkockázat között, s különösen jelentős a mellrák és prosztatarák vonatkozásában (1, 12).

Hogyan növeli meg az IGF-1 a mellrák kockázatot?

Klimaxon átesett nőknél végzett vizsgálatban minél magasabb volt az IGF-1 szint, annál nagyobb volt a mellrák kockázat (6, 13). A vizsgálatok szerint 60-86%-kal nőtt meg a mellrák kockázat az alacsonyabb szintűekhez képest. A klimaxon még át nem esett nőknél a magas IGF-1 szint 150%-kal nagyobb kockázatot jelentett (14, 15). Más vizsgálatok 50 feletti nőknél magas IGF-1 szint esetén 38%-kal nagyobb kockázatot mutattak (16, 17).

Az IGF-1 két funkciója miatt fokozza a rákveszélyt: az egyik, hogy serkenti a növekedést, a másik, hogy gátolja a programozott sejthalált: mindkettő a rosszindulatú sejtek tulajdonsága. Az IGF-1-re szükségünk van a növekedéshez egész gyermekkorunkban (18). De felnőttkorban a magas IGF-1 rákkockázatot és rövidebb élettartamot jelent (19). Az IGF-1 egy inzulinhoz hasonló fehérje hormon (20). Az IGF-1 egy növekedési faktor, amely a normális mellméret kialakulásában fontos szerepe van és az egészséges sejtosztódást, növekedés szolgálja (21).

Felnőtteknél azonban a fokozott szénhidrátfogyasztás megemeli az IGF-1 termelődést és fokozza a rákkockázatot (19, 22). Gyermekekben az IGF-1 sokkal jótékonyabb, hisz a gyors sejtosztódás és a sejtek hosszabb élettartama kívánatos (20, 23). A sejtosztódás és növekedés serkentésén túl, az IGF-1 gátolja a programozott sejthalált, ami pedig a szervezet egyik védőmechanizmusa a rákkal szemben. Amikor ez a természetes védőmechanizmus kudarcot vall, rákra hajlamos sejtek maradnak életben, ahelyett, hogy a szervezet eltávolítaná őket az egészséges szövetekből (14, 26).

Ez a két mechanizmus - a növekedés serkentése és a programozott sejthalál kiiktatása jellemzi a rákos sejteket. Így a magas IGF-1 szint a rák kialakulásának serkentője (14, 22, 27). Laboratóriumi tesztek azt mutatják, hogy amikor a fejlődő mellszövet sejteket magas IGF-1 szintnek teszik ki, a sejtek félgömbszerű dudorokat képeznek nagy osztódási kapacitással; ez abnormális változás, ami a rák kialakulását jelzi (21).

IGF-1 elősegíti a rák kialakulását lokálisan is speciális sejttípusoknál. A helyzetet súlyosbítja, hogy az IGF-1 hatására kibontakozó rák gyakran ellenáll a kemoterápiának és a sugárterápiának (28, 29). Újabb adatok azt mutatják, hogy az IGF-1 és az ösztrogén együtt serkentik a mellszövet elrákosodását (30).

Az IGF-1 gátlása hogyan csökkenti a rákkockázatot?

Önmagában az IGF-1 nem probléma. Mint a legtöbb jelzőmolekula, csak akkor fejti ki hatását, ha az IGF-1 receptorhoz tud kötődni. Ilyen receptor sok szövetben található. A fokozódó IGF-1 szint és a megnövekedett számú IGF-1 receptor szám a kezelésnek ellenálló mellrák jellemzője (29).

Az IGF-1 receptorok száma más rákokban is, pl. a prosztatarákban is magas. Magas IGF-1 szint, lecsökkent IGF-BP3 szinttel (ez a vérben keringő fehérje, amely megköti és ezáltal inaktiválja az IGF-1-et) fokozott prosztatarák kockázatot jelent (31). Mint mellrák esetében is, az IGF-1-el kapcsolatos prosztatarák függetlenné válik a hormonális hatásoktól. Emiatt sokkal nehezebb kezelni a hagyományos hormon gátló módszerekkel (32).

Szerencsére a vizsgálatok szerint számos ponton be lehet avatkozni az IGF-1 termelődésébe és aktivitásába. E ponthoz érdemes megjegyezni, hogy a veleszületetten alacsony IGF-1 szintű embereknek kisebb a rákkockázata (19). Továbbá, a kutatások szerint a cukorbetegségben használt metformin lombikban gátolja az IGF-1 hatását hasnyálmirigy ráksejtekben (34).

A vizsgálatok szerint azoknak a nőknek, akiknek a vérében 120 ng/ml-nél alacsonyabb az IGF-1 szint, valószínűbben élik túl a mellrákot (35). Ténylegesen, ajánlott az IGF-1 szintet csökkenteni (35), mert:

-Lecsökkenti a nagykockázatú nők esetében a rák kialakulását

-A betegség korai szakaszában csökkenti a rák növekedését

-Csökkenti a kiújulás kockázatát

-És növeli a túlélés esélyét

A gyógyszeripar ezért lázasan keresi az IGF-1-et befolyásoló hatóanyagokat,de az eddigi vizsgálatok kudarcot vallottak (26, 36-39).

Csökkentse a szénhidrátfogyasztást és ezzel az IGF-1 szintjét

a legközvetlenebb módja a szénhidrátfogyasztás csökkentésének, amely csökkenti az IGF-1 szintjét is, ha kevesebb finomított szénhidrátot fogyaszt. Ez sok embernek probléma. Itt a cikk étrendkiegészítőket ajánl, amelyek csökkenti a szénhidrátok hasznosulását. A táblázat megtalálható itt

A valódi rákmegelőzés útja azonban nem az, hogy esszük tovább a finomított szénhidrátokat és drága étrendkiegészítőkkel próbáljuk kivédeni ezek hatását, hanem sokkal ésszerűbb és hatásosabb nem ellensúlyozni, hanem elhagyni a finomított szénhidrátokat. Ennek érdekében alakult ki a paleolit életmód vagy a lowcarb (alacsony szénhidráttartalmú) táplálkozás. A paleo nem divat, sem nem szekta, hanem az e cikkben is idézett kutatásokra támaszkodó ésszerűen megtervezett életmód. A tejet és tejtermékeket például azért nem ajánljuk, mert IGF-1-et és más növekedési faktorokat is tartalmaz, amelyek serkentik a rákos sejtek osztódását.

A rák és a szénhidrát kapcsolatáról további cikkeket olvashat itt!

 

 

Tetszett a cikk? Még nem regisztrált? Iratkozzon fel hírlevelemre!

Feliratkozás hírlevélre

 

 

 

Hivatkozott irodalom

 

  1. Emond JA, Pierce JP, Natarajan L, et al. Risk of Breast Cancer Recurrence Associated with Carbohydrate Intake and Tissue Expression of IGF-1 Receptor. Cancer Epidemiol Biomarkers Prev. 2014 Jul;23(7):1273-9.
  2. Boyd DB. Insulin and cancer. Integr Cancer Ther. 2003 Dec;2(4):315-29.
  3. Sieri S, Pala V, Brighenti F, et al. Dietary glycemic index, glycemic load, and the risk of breast cancer in an Italian prospective cohort study. Am J Clin Nutr. 2007 Oct;86(4):1160-6.
  4. Lajous M, Boutron-Ruault MC, Fabre A, Clavel-Chapelon F, Romieu I. Carbohydrate intake, glycemic index, glycemic load, and risk of postmenopausal breast cancer in a prospective study of French women. Am J Clin Nutr. 2008 May;87(5):1384-91.
  5. Yun SH, Kim K, Nam SJ, Kong G, Kim MK. The association of carbohydrate intake, glycemic load, glycemic index, and selected rice foods with breast cancer risk: a case-control study in South Korea. Asia Pac J Clin Nutr. 2010;19(3):383-92.
  6. Krajcik RA, Borofsky ND, Massardo S, Orentreich N. Insulin-like growth factor I (IGF-I), IGF-binding proteins, and breast cancer. Cancer Epidemiol Biomarkers Prev. 2002 Dec;11(12):1566-73.
  7. Romieu I, Ferrari P, Rinaldi S, et al. Dietary glycemic index and glycemic load and breast cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC). Am J Clin Nutr. 2012 Aug;96(2):345-55.
  8. Hoeferlin LA, C EC, Park MA. Challenges in the treatment of triple negative and HER2-overexpressing breast cancer. J Surg Sci. 2013 Dec;1(1):3-7.
  9. Fung TT, Hu FB, Hankinson SE, Willett WC, Holmes MD. Low-carbohydrate diets, dietary approaches to stop hypertension-style diets, and the risk of postmenopausal breast cancer. Am J Epidemiol. 2011 Sep 15;174(6):652-60.
  10. Farrar JL, Hartle DK, Hargrove JL, Greenspan P. A novel nutraceutical property of select sorghum (Sorghum bicolor) brans: inhibition of protein glycation. Phytother Res. 2008 Aug;22(8):1052-6.
  11. Mulligan AM, O'Malley FP, Ennis M, Fantus IG, Goodwin PJ. Insulin receptor is an independent predictor of a favorable outcome in early stage breast cancer. Breast Cancer Res Treat. 2007 Nov;106(1):39-47.
  12. Roberts CT. IGF-1 and prostate cancer. Novartis Found Symp. 2004;262:193-9.
  13. Hankinson SE, Willett WC, Colditz GA, et al. Circulating concentrations of insulin-like growth factor-I and risk of breast cancer. Lancet. 1998 May 9;351(9113):1393-6.
  14. Wu MH, Chou YC, Chou WY, et al. Relationships between critical period of estrogen exposure and circulating levels of insulin-like growth factor-I (IGF-I) in breast cancer: evidence from a case-control study. Int J Cancer. 2010 Jan 15;126(2):508-14.
  15. Schernhammer ES, Holly JM, Pollak MN, Hankinson SE. Circulating levels of insulin-like growth factors, their binding proteins, and breast cancer risk. Cancer Epidemiol Biomarkers Prev. 2005 Mar;14(3):699-704.
  16. Rinaldi S, Peeters PH, Berrino F, et al. IGF-I, IGFBP-3 and breast cancer risk in women: The European Prospective Investigation into Cancer and Nutrition (EPIC). Endocr Relat Cancer. 2006 Jun;13(2):593-605.
  17. Kaaks R, Johnson T, Tikk K, et al. Insulin-like growth factor I and risk of breast cancer by age and hormone receptor status-A prospective study within the EPIC cohort. Int J Cancer. 2014 Jun 1;134(11):2683-90.
  18. Yakar S, Rosen CJ, Beamer WG, et al. Circulating levels of IGF-1 directly regulate bone growth and density. J Clin Invest. 2002 Sep;110(6):771-81.
  19. Melnik BC, John SM, Schmitz G. (2011). Over-stimulation of insulin/IGF-1 signaling by western diet may promote diseases of civilization: lessons learnt from laron syndrome. Nutr Metab. 2011;8(1):41.
  20. Laron Z. Insulin-like growth factor 1 (IGF-1): a growth hormone. J Clin Pathol: Mol Pathol. 2001;54:311-16.
  21. Gajewska M, Zielniok K, Debski B, Motyl T. IGF-I retards proper development of acinar structures formed by bovine mammary epithelial cells via sustained activation of Akt kinase. Domest Anim Endocrinol. 2013 Oct;45(3):111-21.
  22. Kaaks R. Nutrition, insulin, IGF-1 metabolism and cancer risk: a summary of epidemiological evidence. Novartis Found Symp. 2004;262:247-60; discussion 260-8.
  23. Runchey SS, Pollak MN, Valsta LM, et al. Glycemic load effect on fasting and post-prandial serum glucose, insulin, IGF-1 and IGFBP-3 in a randomized, controlled feeding study. Eur J Clin Nutr. 2012 Oct;66(10):1146-52.
  24. Romieu I, Ferrari P, Rinaldi S, et al. Dietary glycemic index and glycemic load and breast cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC). Am J Clin Nutr. 2012 Aug;96(2):345-55.
  25. Hellawell GO, Turner GD, Davies DR, Poulsom R, Brewster SF, Macaulay VM. Expression of the type 1 insulin-like growth factor receptor is up-regulated in primary prostate cancer and commonly persists in metastatic disease. Cancer Res. 2002 May 15;62(10):2942-50.
  26. Robertson JF, Ferrero JM, Bourgeois H, et al. Ganitumab with either exemestane or fulvestrant for postmenopausal women with advanced, hormone-receptor-positive breast cancer: a randomised, controlled, double-blind, phase 2 trial. Lancet Oncol. 2013 Mar;14(3):228-35.
  27. Vadgama JV, Wu Y, Datta G, Khan H, Chillar R. Plasma insulin-like growth factor-I and serum IGF-binding protein 3 can be associated with the progression of breast cancer, and predict the risk of recurrence and the probability of survival in African-American and Hispanic women. Oncology. 1999 Nov;57(4):330-40.
  28. Arnaldez FI, Helman LJ. Targeting the insulin growth factor receptor 1. Hematol Oncol Clin North Am. 2012 Jun;26(3):527-42.
  29. Jones HE, Goddard L, Gee JM, et al. Insulin-like growth factor-I receptor signalling and acquired resistance to gefitinib (ZD1839; Iressa) in human breast and prostate cancer cells. Endocr Relat Cancer. 2004 Dec;11(4):793-814.
  30. Sarfstein R, Pasmanik-Chor M, Yeheskel A, et al. Insulin-like growth factor-I receptor (IGF-IR) translocates to nucleus and autoregulates IGF-IR gene expression in breast cancer cells. J Biol Chem. 2012 Jan 20;287(4):2766-76.
  31. Hellawell GO, Turner GD, Davies DR, Poulsom R, Brewster SF, Macaulay VM. Expression of the type 1 insulin-like growth factor receptor is up-regulated in primary prostate cancer and commonly persists in metastatic disease. Cancer Res. 2002 May 15;62(10):2942-50.
  32. Galet C, Gray A, Said JW, et al. Effects of Calorie Restriction and IGF-1 Receptor Blockade on the Progression of 22Rv1 Prostate Cancer Xenografts. Int J Mol Sci. 2013;14(7):13782-95.
  33. Evdokimova V, Tognon CE, Benatar T, et al. IGFBP7 binds to the IGF-1 receptor and blocks its activation by insulin-like growth factors. Sci Signal. 2012 Dec 18;5(255):ra92.
  34. Karnevi E, Said K, Andersson R, Rosendahl AH. Metformin-mediated growth inhibition involves suppression of the IGF-I receptor signalling pathway in human pancreatic cancer cells. BMC Cancer. 2013;13:235.
  35. Vadgama JV, Wu Y, Datta G, Khan H, Chillar R. Plasma insulin-like growth factor-I and serum IGF-binding protein 3 can be associated with the progression of breast cancer, and predict the risk of recurrence and the probability of survival in African-American and Hispanic women. Oncology. 1999 Nov;57(4):330-40.
  36. Fagan DH, Uselman RR, Sachdev D, Yee D. Acquired resistance to tamoxifen is associated with loss of the type I insulin-like growth factor receptor: implications for breast cancer treatment. Cancer Res. 2012 Jul 1;72(13):3372-80.
  37. Fu P, Ibusuki M, Yamamoto Y, et al. Insulin-like growth factor-1 receptor gene expression is associated with survival in breast cancer: a comprehensive analysis of gene copy number, mRNA and protein expression. Breast Cancer Res Treat. 2011 Nov;130(1):307-17.
  38. Ma CX, Suman VJ, Goetz M, et al. A phase I trial of the IGF-1R antibody Cixutumumab in combination with temsirolimus in patients with metastatic breast cancer. Breast Cancer Res Treat. 2013 May;139(1):145-53.
  39. Warshamana-Greene GS, Litz J, Buchdunger E, Garcia-Echeverria C, Hofmann F, Krystal GW. The insulin-like growth factor-I receptor kinase inhibitor, NVP-ADW742, sensitizes small cell lung cancer cell lines to the effects of chemotherapy. Clin Cancer Res. 2005 Feb 15;11(4):1563-71.
  40. Preuss HG. Bean amylase inhibitor and other carbohydrate absorption blockers: effects on diabesity and general health. J Am Coll Nutr. 2009 Jun;28(3):266-76.
  41. Pasanisi P, Bruno E, Manoukian S, Berrino F. A randomized controlled trial of diet and physical activity in BRCA mutation carriers. Fam Cancer. 2014 Jun;13(2):181-7.
  42. Klement RJ, Kämmerer U. Is there a role for carbohydrate restriction in the treatment and prevention of cancer? Nutr Metab (Lond). 2011 Oct 26;8:75.
  43. Kaats GR, Keith SC, Keith PL, Leckie RB, Perricone NV, Preuss HG. A combination of l-arabinose and chromium lowers circulating glucose and insulin levels after an acute oral sucrose challenge. Nutr J. 2011;10:42.
  44. Shibanuma K, Degawa Y, Houda K. Determination of the transient period of the EIS complex and investigation of the suppression of blood glucose levels by L-arabinose in healthy adults. Eur J Nutr. 2011 Sep;50(6):447-53.
  45. Preuss HG, Echard B, Bagchi D, Perricone NV. Comparing effects of carbohydrate (CHO) blockers and trivalent chromium on CHO-induced insulin resistance and elevated blood pressure in rats. J Am Coll Nutr. 2013;32(1):58-65.
  46. Evock-Clover CM, Polansky MM, Anderson RA, Steele NC. Dietary chromium supplementation with or without somatotropin treatment alters serum hormones and metabolites in growing pigs without affecting growth performance. J Nutr. 1993 Sep;123(9):1504-12.
  47. No authors listed. Diabetes Educ. 2004;Suppl:2-14.
  48. Frauchiger MT, Wenk C, Colombani PC. Effects of acute chromium supplementation on postprandial metabolism in healthy young men. J Am Coll Nutr. 2004 Aug;23(4):351-7.
  49. Wang ZQ, Qin J, Martin J, et al. Phenotype of subjects with type 2 diabetes mellitus may determine clinical response to chromium supplementation. Metabolism. 2007 Dec;56(12):1652-5.
  50. Sharma S, Agrawal RP, Choudhary M, Jain S, Goyal S, Agarwal V. Beneficial effect of chromium supplementation on glucose, HbA1C and lipid variables in individuals with newly onset type-2 diabetes. J Trace Elem Med Biol. 2011 Jul;25(3):149-53.
  51. Landin-Wilhelmsen K, Wilhelmsen L, Lappas G, et al. Serum insulin-like growth factor I in a random population sample of men and women: relation to age, sex, smoking habits, coffee consumption and physical activity, blood pressure and concentrations of plasma lipids, fibrinogen, parathyroid hormone and osteocalcin. Clin Endocrinol (Oxf). 1994 Sep;41(3):351-7.
  52. Ho L, Varghese M, Wang J, et al. Dietary supplementation with decaffeinated green coffee improves diet-induced insulin resistance and brain energy metabolism in mice. Nutr Neurosci. 2012 Jan;15(1):37-45.
  53. Lecoultre V, Carrel G, Egli L, et al. Coffee consumption attenuates short-term fructose-induced liver insulin resistance in healthy men. Am J Clin Nutr. 2014 Feb;99(2):268-75.
  54. Song SJ, Choi S, Park T. Decaffeinated green coffee bean extract attenuates diet-induced obesity and insulin resistance in mice. Evid Based Complement Alternat Med. 2014;2014:718379. Epub 2014 Apr 10.
  55. Omoruyi F, Adamson I. Digestive and hepatic enzymes in streptozotocin-induced diabetic rats fed supplements of dikanut (Irvingia gabonensis) and cellulose. Ann Nutr Metab. 1993;37(1):14-23.
  56. Ngondi JL, Oben JE, Minka SR. The effect of Irvingia gabonensis seeds on body weight and blood lipids of obese subjects in Cameroon. Lipids Health Dis. 2005;4:12.
  57. Oben JE, Ngondi JL, Blum K. Inhibition of Irvingia gabonensis seed extract (OB131) on adipogenesis as mediated via down regulation of the PPARgamma and leptin genes and up-regulation of the adiponectin gene. Lipids Health Dis. 2008;7:44.
  58. Ngondi JL, Etoundi BC, Nyangono CB, Mbofung CM, Oben JE. IGOB131, a novel seed extract of the West African plant Irvingia gabonensis, significantly reduces body weight and improves metabolic parameters in overweight humans in a randomized double-blind placebo controlled investigation. Lipids Health Dis. 2009;8:7.
  59. Ross SM. African mango (IGOB131): a proprietary seed extract of Irvingia gabonensis is found to be effective in reducing body weight and improving metabolic parameters in overweight humans. Holist Nurs Pract. 2011 Jul-Aug;25(4):215-7.
  60. Duerr RL, McKirnan MD, Gim RD,Clark RG, Chien KR, Ross J. Cardiovascular effects of insulin-like growth factor-1 and growth hormone in chronic left ventricular failure in the rat. Circulation. 1996;93(12):2188-96.
  61. Miyahara C, Miyazawa M, Satoh S, Sakai A, Mizusaki S. Inhibitory effects of mulberry leaf extract on postprandial hyperglycemia in normal rats. J Nutr Sci Vitaminol (Tokyo). 2004 Jun;50(3):161-4.
  62. Zhong L, Furne JK, Levitt MD. An extract of black, green, and mulberry teas causes malabsorption of carbohydrate but not of triacylglycerol in healthy volunteers. Am J Clin Nutr. 2006 Sep;84(3):551-5.
  63. Tanabe K, Nakamura S, Omagari K, Oku T. Repeated ingestion of the leaf extract from Morus alba reduces insulin resistance in KK-Ay mice. Nutr Res. 2011 Nov;31(11):848-54.
  64. Lim HH, Lee SO, Kim SY, Yang SJ, Lim Y. Anti-inflammatory and antiobesity effects of mulberry leaf and fruit extract on high fat diet-induced obesity. Exp Biol Med (Maywood). 2013 Oct;238(10):1160-9.
  65. Nazari M, Hajizadeh MR, Mahmoodi M, Mirzaei MR, Hassanshahi G. The regulatory impacts of Morus Alba leaf extract on some enzymes involved in glucose metabolism pathways in diabetic rat liver. Clin Lab. 2013;59(5-6):497-504.
  66. Wu T, Qi X, Liu Y, et al. Dietary supplementation with purified mulberry (Morus australis Poir) anthocyanins suppresses body weight gain in high-fat diet fed C57BL/6 mice. Food Chem. 2013 Nov 1;141(1):482-7.
  67. Wu T, Tang Q, Gao Z, et al. Blueberry and mulberry juice prevent obesity development in C57BL/6 mice. PLoS One. 2013;8(10):e77585.
  68. Naowaboot J, Pannangpetch P, Kukongviriyapan V, Prawan A, Kukongviriyapan U, Itharat A. Mulberry leaf extract stimulates glucose uptake and GLUT4 translocation in rat adipocytes. Am J Chin Med. 2012;40(1):163-75.
  69. Martinez JA, Marcos R, Macarulla MT, Larralde J. Growth, hormonal status and protein turnover in rats fed on a diet containing peas (Pisum sativum L.) as the source of protein. Plant Foods Hum Nutr. 1995 Apr;47(3):211-20.
  70. Obiro WC, Zhang T, Jiang B. The nutraceutical role of the Phaseolus vulgaris alpha-amylase inhibitor. Br J Nutr. 2008 Jul;100(1):1-12.
  71. Nilsson A, Johansson E, Ekstrom L, Bjorck I. Effects of a brown beans evening meal on metabolic risk markers and appetite regulating hormones at a subsequent standardized breakfast: a randomized cross-over study. PLoS One. 2013;8(4):e59985.
  72. Spadafranca A, Rinelli S, Riva A, et al. Phaseolus vulgaris extract affects glycometabolic and appetite control in healthy human subjects. Br J Nutr. 2013 May 28;109(10):1789-95.
  73. Zhang S, Zhu M, Shen D. Experimental study on the treatment of diabetes by phloridzin in rats. J Tongji Med Univ. 1998;18(2):105-7, 118.
  74. Zhao H, Yakar S, Gavrilova O, et al. Phloridzin improves hyperglycemia but not hepatic insulin resistance in a transgenic mouse model of type 2 diabetes. Diabetes. 2004 Nov;53(11):2901-9.
  75. Simonyi G. New possibility in the oral glucose lowering treatment of type 2 diabetes mellitus: sodium-glucose co-transporter-2 inhibitors. Orv Hetil. 2012 May 6;153(18):695-701.
  76. Paradis ME, Couture P, Lamarche B. A randomised crossover placebo-controlled trial investigating the effect of brown seaweed (Ascophyllum nodosum and Fucus vesiculosus) on postchallenge plasma glucose and insulin levels in men and women. Appl Physiol Nutr Metab. 2011 Dec;36(6):913-9.
  77. Lordan S, Smyth TJ, Soler-Vila A, Stanton C, Ross RP. The alpha-amylase and alpha-glucosidase inhibitory effects of Irish seaweed extracts. Food Chem. 2013 Dec 1;141(3):2170-6.
  78. Park JH, Lee SH, Chung IM, Park Y. Sorghum extract exerts an anti-diabetic effect by improving insulin sensitivity via PPAR-gamma in mice fed a high-fat diet. Nutr Res Pract. 2012 Aug;6(4):322-7.
  79. Poquette NM, Gu X, Lee SO. Grain sorghum muffin reduces glucose and insulin responses in men. Food Funct. 2014 May;5(5):894-9.
  80. Sasaki M, Joh T, Koikeda S, et al. A novel strategy in production of oligosaccharides in digestive tract: prevention of postprandial hyperglycemia and hyperinsulinemia. J Clin Biochem Nutr. 2007 Nov;41(3):191-6.
  81. Brison Y, Fabre E, Moulis C, Portais JC, Monsan P, Remaud-Simeon M. Synthesis of dextrans with controlled amounts of alpha-1,2 linkages using the transglucosidase GBD-CD2. Appl Microbiol Biotechnol. 2010 Mar;86(2):545-54.
  82. Sako T, Mori A, Lee P, et al. Supplementing transglucosidase with a high-fiber diet for prevention of postprandial hyperglycemia in streptozotocin-induced diabetic dogs. Vet Res Commun. 2010 Feb;34(2):161-72.
  83. Sasaki M, Imaeda K, Okayama N, et al. Effects of transglucosidase on diabetes, cardiovascular risk factors and hepatic biomarkers in patients with type 2 diabetes: a 12-week, randomized, double-blind, placebo-controlled trial. Diabetes Obes Metab. 2012 Apr;14(4):379-82.
  84. Sasaki M, Ogasawara N, Funaki Y, et al. Transglucosidase improves the gut microbiota profile of type 2 diabetes mellitus patients: a randomized double-blind, placebo-controlled study. BMC Gastroenterol. 2013;13:81.
  85. Holzenberger M. Igf-I signaling and effects on longevity. Nestle Nutr Workshop Ser Pediatr Program. 2011;68:237-45; discussion 46-9.
  86. Barzilai N, Bartke A. Biological approaches to mechanistically understand the healthy life span extension achieved by calorie restriction and modulation of hormones. J Gerontol A Biol Sci Med Sci. 2009 Feb;64(2):187-91.
  87. Gallagher EJ, LeRoith D. Is growth hormone resistance/IGF-1 reduction good for you? Cell Metab. 2011 Apr 6;13(4):355-6.
  88. Narasimhan SD, Yen K, Tissenbaum HA. Converging pathways in life span regulation. Curr Biol. 2009 Aug 11;19(15):R657-66.
  89. Bartke A, Westbrook R. Metabolic characteristics of long-lived mice. Front Genet. 2012;3:288.
  90. Narasimhan SD, Yen K, Tissenbaum HA. Converging pathways in life span regulation. Curr Biol. 2009 Aug 11;19(15):R657-66.
  91. Mercken EM, Crosby SD, Lamming DW, et al. Calorie restriction in humans inhibits the PI3K/AKT pathway and induces a younger transcription profile. Aging Cell. 2013 Aug;12(4):645-51.
  92. Galet C, Gray A, Said JW, et al. Effects of calorie restriction and IGF-1 receptor blockade on the progression of 22Rv1 prostate cancer xenografts. Int J Mol Sci. 2013;14(7):13782-95.